Abstract:
Sufficient conditions for the embedding of a Sobolev space in Lebesgue spaces on a domain depend on the integrability and smoothness parameters of the spaces and on the geometric features of the domain. In the present paper, Sobolev embedding theorems are obtained for a class of domains with irregular boundary; this class includes the well-known classes of $\sigma$-John domains, domains with the flexible cone condition, and their anisotropic analogs.