RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2007 Volume 256, Pages 278–289 (Mi tm467)

This article is cited in 2 papers

An Additive Cohomological Equation and Typical Behavior of Birkhoff Sums over a Translation of the Multidimensional Torus

A. V. Rozhdestvenskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: For a periodic function $f$ with a given decrease of the moduli of its Fourier coefficients, we analyze the solvability of the equation $w(T_\alpha x)-w(x)=f(x)-\int_{\mathbb T^d}f(t)\,dt$ and the asymptotic behavior of the Birkhoff sums $\sum _{s=0}^{n-1} f(T^s_\alpha x)$ for almost every $\alpha$. The results obtained are applied to the study of ergodic properties of a cylindrical cascade and of a special flow on the torus.

UDC: 517.5

Received in September 2006


 English version:
Proceedings of the Steklov Institute of Mathematics, 2007, 256, 263–274

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026