RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2025 Volume 329, Pages 90–99 (Mi tm4457)

This article is cited in 2 papers

Algebraic Gromov's Ellipticity of Cubic Hypersurfaces

Sh. I. Kalimana, M. G. Zaidenbergb

a Department of Mathematics, University of Miami, Coral Gables, FL 33124, USA
b Université Grenoble Alpes, CNRS, Institut Fourier, 38000 Grenoble, France

Abstract: We show that every smooth cubic hypersurface $X$ in $\mathbb P^{n+1}$, $n\ge 2$, is algebraically elliptic in Gromov's sense. This gives the first examples of nonrational projective manifolds elliptic in Gromov's sense. We also deduce that the punctured affine cone over $X$ is elliptic.

Keywords: spray, Gromov's ellipticity, unirationality, stable rationality, cubic threefold, cubic hypersurface, affine cone.

Received: April 24, 2024
Revised: December 14, 2024
Accepted: January 30, 2025

DOI: 10.4213/tm4457


 English version:
Proceedings of the Steklov Institute of Mathematics, 2025, 329, 79–87

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026