RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 293, Pages 8–42 (Mi tm3702)

This article is cited in 10 papers

Nonlinear trigonometric approximations of multivariate function classes

D. B. Bazarkhanov

Institute of Mathematics and Mathematical Modeling, ul. Pushkina 125, Almaty, 050010 Kazakhstan

Abstract: Order-sharp estimates are established for the best $N$-term approximations of functions from Nikol'skii–Besov type classes $\mathrm B^{sm}_{pq}(\mathbb T^k)$ with respect to the multiple trigonometric system $\mathfrak T^{(k)}$ in the metric of $L_r(\mathbb T^k)$ for a number of relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, $k=m_1+\dots+m_n$). Constructive methods of nonlinear trigonometric approximation –variants of the so-called greedy algorithms – are used in the proofs of upper estimates.

UDC: 517.518.8

Received: December 2, 2015

DOI: 10.1134/S0371968516020023


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 293, 2–36

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026