Abstract:
We consider nonlinear ordinary differential equations up to the sixth order that are associated with the heat equation. Each of them is subjected to the Painlevé analysis. For the fourth- and sixth-order equations we obtain a criterion for having the Painlevé property; for the fifth-order equation we formulate necessary conditions for passing the Painlevé test. We also present a fifth-order equation analogous to the Chazy-$3$ equation.