RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2014 Volume 286, Pages 219–230 (Mi tm3570)

This article is cited in 6 papers

Geometry of compact complex manifolds with maximal torus action

Yu. M. Ustinovsky

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: We study the geometry of compact complex manifolds $M$ equipped with a maximal action of a torus $T=(S^1)^k$. We present two equivalent constructions that allow one to build any such manifold on the basis of special combinatorial data given by a simplicial fan $\Sigma$ and a complex subgroup $H\subset T_\mathbb C=(\mathbb C^*)^k$. On every manifold $M$ we define a canonical holomorphic foliation $\mathcal F$ and, under additional restrictions on the combinatorial data, construct a transverse Kähler form $\omega _\mathcal F$. As an application of these constructions, we extend some results on the geometry of moment–angle manifolds to the case of manifolds $M$.

UDC: 514.763.42

Received in March 2014

DOI: 10.1134/S0371968514030108


 English version:
Proceedings of the Steklov Institute of Mathematics, 2014, 286, 198–208

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026