RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2014 Volume 286, Pages 231–240 (Mi tm3556)

Geometric aspects of a deformation of the standard addition on integer lattices

S. Yu. Tsarev

Lomonosov Moscow State University, Moscow, Russia

Abstract: Let $\mathfrak A_n$ be the set of all those vectors of the standard lattice $\mathbb Z^n$ whose coordinates are pairwise incomparable modulo $n$. In this paper, we analyze the group structure on $\mathfrak A_n$ that arises from the construction of a deformation of multiplication described by V. M. Buchstaber. We present a geometric realization of this group in the ambient space $\mathbb R^n\supset\mathbb Z^n$ and find its generators and relations.

UDC: 512.543.1

Received in June 2014

DOI: 10.1134/S037196851403011X


 English version:
Proceedings of the Steklov Institute of Mathematics, 2014, 286, 209–218

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026