RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2012 Volume 276, Pages 57–82 (Mi tm3357)

This article is cited in 10 papers

On the distribution of values of the derivative of the Riemann zeta function at its zeros. I

Akio Fujii

Department of Mathematics, Rikkyo University, Tokyo, Japan

Abstract: Let $\zeta'(s)$ be the derivative of the Riemann zeta function $\zeta(s)$. A study on the value distribution of $\zeta'(s)$ at the non-trivial zeros $\rho$ of $\zeta(s)$ is presented. In particular, for a fixed positive number $X$, an asymptotic formula and a non-trivial upper bound for the sum $\sum_{0<\operatorname{Im}\rho\leq T}\zeta'(\rho)X^\rho$ as $T\to\infty$ are given. We clarify the dependence on the arithmetic nature of $X$.

UDC: 511.331

Received in August 2011

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2012, 276, 51–76

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026