RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2002 Volume 236, Pages 519–527 (Mi tm321)

On the 16th Hilbert Problem

N. Sadovskaiaa, R. Ramirez

a Polytechnic University of Catalonia, Department of Applied Mathematics II

Abstract: For a polynomial planar vector field of degree $n\geq 3$ with $S$ ($S\geq 2$) invariant nonsingular algebraic curves of degree greater than or equal to two, we proved that the maximal number of algebraic limit cycles is $n-1$. We use the Pontryagin method to analyze the problem of the maximal number of limit cycles for Lienard's equation.

UDC: 517.9

Received in December 2000

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2002, 236, 506–514

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026