RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2002 Volume 236, Pages 328–331 (Mi tm302)

This article is cited in 2 papers

On the Global Geometry of Harmonic Symmetric Bilinear Differential Forms

M. V. Smolnikova

Vladimir State Pedagogical University

Abstract: A harmonic symmetric $p$-form $\varphi$ is defined as an element of the kernel of a self-adjoint differential operator $\square$. By using the properties of this operator, the dimension of the $\mathbb R$-modulus of harmonic symmetric $p$-forms is shown to be finite on a compact Riemannian manifold. A nonexistence theorem is proved for harmonic symmetric $2$-forms tangent to the boundary of a compact Riemannian manifold.

UDC: 514.78+517.95

Received in February 2000


 English version:
Proceedings of the Steklov Institute of Mathematics, 2002, 236, 315–318

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026