RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2002 Volume 236, Pages 95–102 (Mi tm280)

This article is cited in 7 papers

On Bifurcations of Two-Dimensional Diffeomorphisms with a Homoclinic Tangency of Manifolds of a “Neutral” Saddle

V. S. Gonchenko

Research Institute for Applied Mathematics and Cybernetics, N. I. Lobachevski State University of Nizhnii Novgorod

Abstract: Bifurcations of periodic orbits are studied for two-dimensional diffeomorphisms close to a diffeomorphism with the quadratic homoclinic tangency to a saddle fixed point whose Jacobian is equal to one. Problems of the coexistence of periodic orbits of various types of stability are considered.

UDC: 517.9

Received in December 2000


 English version:
Proceedings of the Steklov Institute of Mathematics, 2002, 236, 86–93

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026