RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2005 Volume 248, Pages 250–261 (Mi tm135)

This article is cited in 6 papers

On Relative Widths of Classes of Differentiable Functions

Yu. N. Subbotina, S. A. Telyakovskiib

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: The Kolmogorov widths $d_{2n} (W^r_C, C)$ and relative widths $K_{2n}(W^r_C,MW^j_C,C)$ of the class $W^r_C$ with respect to $MW^j_C$, where $j < r$, are considered. The minimal multiplier $M$ for which these widths are equal is estimated from above and below; the bounds obtained show that this minimal value is asymptotically equal to the Favard constant $\mathcal K_{r-j}$ as $n \to \infty $.

UDC: 517.224

Received in September 2004


 English version:
Proceedings of the Steklov Institute of Mathematics, 2005, 248, 243–254

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026