RUS  ENG
Full version
JOURNALS // Proceedings of the Institute for System Programming of the RAS // Archive

Proceedings of ISP RAS, 2025 Volume 37, Issue 3, Pages 237–250 (Mi tisp1000)

SumHiS: extractive summarization exploiting hidden structure

P. A. Tikhonovab, A. O. Yaninac, V. A. Malykhd

a Artificial Intelligence Research Institute
b Skolkovo Institute of Science and Technology
c Moscow Institute of Physics and Technology
d ITMO University

Abstract: Extractive summarization is a task of highlighting the most important parts of the text. We introduce a new approach to extractive summarization task using hidden clustering structure of the text. Experimental results on CNN/DailyMail demonstrate that our approach generates more accurate summaries than both extractive and abstractive methods, achieving state-of-the-art results in terms of ROUGE-2 metric exceeding the previous approaches by 10

Keywords: summarization, NLP.

DOI: 10.15514/ISPRAS-2025-37(3)-17



© Steklov Math. Inst. of RAS, 2026