RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2025 Volume 31, Number 4, Pages 10–25 (Mi timm2211)

On estimates of $n$-term approximations of functions in Lorentz space.

G. A. Akishevab

a Kazakhstan Branch of Lomonosov Moscow State University, Nur-Sultan
b Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan, Almaty

Abstract: The article considers the Lorentz space $L_{q, \tau}(\mathbb{T}^{m})$ of periodic functions of $m$ variables and the class $W_{q, \tau}^{a, b(\cdot), \overline{r}}$ for $1<q, \tau <\infty$, $a>0$, $b(t)$ is a slowly varying function on $[1, \, \infty )$. $W_{q, \tau}^{a, b(\cdot), \overline{r}}$ the class of all functions $f\in L_{q, \tau}(\mathbb{T}^{m})$ for which $S_{n}^{(\overline\gamma)}(f,\overline{x})$ the partial sum over the step hyperbolic cross of the Fourier series in the norm of $L_{q, \tau}(\mathbb{T}^{m})$ converges at rate $2^{-na}b(2^{n})$ as $n\rightarrow \infty$. The main result is the exact order of the best $n$-term trigonometric approximations of functions from the class $W_{q, \tau_{1}}^{a, b(\cdot), \overline{r}}$ in the norm of the space $L_{p, \tau_{2}}(\mathbb{T}^{m})$ in the case $1<q<p\leqslant 2$, for some relations between the parameters $a$, $\tau_{1}$, $\tau_{2}$. The result is proved by a constructive method.

Keywords: Lorentz space, trigonometric system, best $n$-term approximation, constructive method.

UDC: 517.51

MSC: 42A10, 41A46

Received: 30.04.2025
Revised: 09.09.2025
Accepted: 21.09.2025

DOI: 10.21538/0134-4889-2025-31-4-10-25



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026