RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2022 Volume 28, Number 4, Pages 40–53 (Mi timm1948)

This article is cited in 4 papers

On One Generalized Translation and the Corresponding Inequality of Different Metrics

V. V. Arestovab, M. V. Deikalovaba

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: In this paper, we discuss the properties of the generalized translation operator generated by the system of functions $\left\{ \cos\left(\frac{(2k-1)\pi }{2}t\right)\right\}_{k=1}^\infty$ in the spaces $L^p(0,1)$, $p\ge 1$. The translation operator is applied to the study of the Nikol'skii inequality between the uniform norm and the $L^p$-norm of polynomials in this system.

Keywords: generalized translation operator, trigonometric polynomial, inequality of different metrics.

UDC: 517.518.86

MSC: 41A17

Received: 05.06.2022
Revised: 05.07.2022
Accepted: 11.07.2022

DOI: 10.21538/0134-4889-2022-28-4-40-53


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2022, 319, suppl. 1, S30–S42

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026