RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2022 Volume 28, Number 2, Pages 74–83 (Mi timm1905)

This article is cited in 1 paper

On Shilla graphs with $b = 6$ and $b_{2}\ne c_{2}$

V. V. Bitkina, A. K. Gutnova

North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz

Abstract: A Shilla graph is a distance-regular graph $\Gamma$ (with valency $k$) of diameter $3$ that has second eigenvalue $\theta_1$ equal to $a=a_3$. In this case $a$ divides $k$ and the parameter $b=b(\Gamma)=k/a$ is defined. A Shilla graph has intersection array $\{ab,(a+1)(b-1),b_2;1,c_2,a(b-1)\}$. J. Koolen and J. Park showed that for fixed $b$ there are finitely many Shilla graphs. Admissible intersection arrays of Shilla graphs were found for $b\in \{2,3\}$ by Koolen and Park in 2010 and for $b\in \{4,5\}$ by A. A. Makhnev and I. N. Belousov in 2021. Makhnev and Belousov also proved the nonexistence of $Q$-polynomial Shilla graphs with $b=5$ and found $Q$-polynomial Shilla graphs with $b=6$. A $Q$‑polynomial Shilla graph with $b=6$ has intersection array $\{42t,5(7t+1),3(t+3);1,3(t+3),35t\}$ with $t\in \{7,12,17,27,57\}$, $\{372,315,75;1,15,310\}$, $\{744,625,125;1,25,620\}$, $\{930,780,150;1,30,775\}$, $\{312,265,48;$ $1,24,260\}$, $\{624,525,80;1,40,520\}$, $\{1794,1500,200;1,100,1495\}$, or $\{5694,4750,600;1,300,4745\}$. The nonexistence of graphs with intersection arrays $\{372,315,75;1,15,310\}$, $\{744,625,125;1,25,620\}$, $\{1794,1500,200;1,$ $100,1495\}$, and $\{42t,5(7t+1),3(t+3);1,3(t+3),35t\}$ was proved earlier. We prove that distance-regular graphs with intersection arrays $\{312,265,48;1,24,260\}$, $\{624,525,80;1,40,520\}$, and $\{930,780,150;1,30,775\}$ do not exist.

Keywords: Shilla graph, distance-regular graph, $Q$-polynomial graph.

UDC: 519.17

MSC: 20D05

Received: 17.02.2022
Revised: 28.04.2022
Accepted: 30.04.2022

DOI: 10.21538/0134-4889-2022-28-2-74-83



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026