Abstract:
The problem of reconstructing an unknown external influence in a system of linear ordinary differential equations is investigated on the basis of the approach of the theory of dynamic inversion. A statement is considered in which the disturbance is reconstructed synchronously with the process from incomplete discrete information on a part of coordinates of the phase trajectory. A finite-step software-oriented solution algorithm based on the method of auxiliary closed-loop models is proposed, and its error is estimated. The novelty of the paper is that we consider the inverse problem for a dynamic system in which the disturbance to be reconstructed is subject to geometric constraints and is not included in the measured component.