RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2018 Volume 24, Number 4, Pages 156–175 (Mi timm1583)

Pointwise Turán problem for periodic positive definite functions

V. I. Ivanov

Tula State University

Abstract: We study the pointwise Turán problem on the largest value at an arbitrary point $x$ of a $1$-periodic positive definite function supported on the interval $[-h, h]$ and equal to $1$ at zero. For rational values of $x$ and $h$, the problem reduces to a discrete version of the Fejér problem on the largest value of the $\nu$th coefficient of an even trigonometric polynomial of order $p-1$ that has zero coefficient 1 and is nonnegative on a uniform grid $k/q$, $k=0,\dots,q-1$. The discrete Fejér problem is solved for a number of values of the parameters $\nu$, $p$, and $q$. In all the cases, we construct extremal polynomials and quadrature formulas, which yield an estimate for the largest coefficient.

Keywords: Fourier transform and series, periodic positive definite function, pointwise Turán problem, quadrature formula, extremal polynomial.

UDC: 517.51

MSC: 42A05, 42A32, 42A82

Received: 29.08.2018
Revised: 09.11.2018
Accepted: 12.11.2018

DOI: 10.21538/0134-4889-2018-24-4-156-175



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026