Abstract:
A group $G$ is saturated with groups from a set of groups $\mathfrak{X}$ if any finite subgroup $K$ of $G$ is contained in a subgroup of $G$ isomorphic to some group from $\mathfrak{X}$. A group $G$ is called a Shunkov group (a conjugately biprimitively finite group) if, for any finite subgroup $H$ of $G$, any two conjugate elements of prime order in the quotient group $N_G(H)/h$ generate a finite group. Let $G$ be a group. If all elements of finite orders from $G$ are contained in a periodic subgroup of $G$, then it is called a periodic part of $G$ and is denoted by $t(G)$. It is known that a Shunkov group may have no periodic part. The existence of a periodic part of a Shunkov group saturated with finite wreathed groups is proved and the structure of the periodic part is established.
Keywords:group saturated with a set of groups, Shunkov group.