RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2015 Volume 21, Number 1, Pages 280–293 (Mi timm1164)

This article is cited in 2 papers

Difference scheme of highest accuracy order for a singularly perturbed reaction-diffusion equation based on the solution decomposition method

G. I. Shishkin, L. P. Shishkina

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: A Dirichlet problem is considered for a singularly perturbed ordinary differential reaction-diffusion equation. For this problem, a new approach is developed in order to construct difference schemes whose solutions converge in the maximum norm uniformly with respect to the perturbation parameter $\varepsilon$, $\varepsilon \in (0,1]$ (i.e., $\varepsilon$-uniformly) with order of accuracy significantly greater than the achievable accuracy order for the Richardson method on piecewise-uniform grids. Important in this approach is the use of uniform grids for solving grid subproblems for regular and singular components of the grid solution. Using the asymptotic construction technique, a basic difference scheme of the solution decomposition method is constructed that converges $\varepsilon$-uniformly in the maximum norm at the rate ${\mathcal O} \left(N^{-2} \ln^2 N\right)$, where $N+1$ is the number of nodes in the uniform grids used. The Richardson extrapolation technique on three embedded grids is applied to the basic scheme of the solution decomposition method. As a result, we have constructed the Richardson scheme of the solution decomposition method with highest accuracy order. The solution of this scheme converges $\varepsilon$-uniformly in the maximum norm at the rate ${\mathcal O} \left(N^{-6} \ln^6 N\right)$.

Keywords: ; singularly perturbed boundary value problem; ordinary differential reaction-diffusion equation; decomposition of a discrete solution; asymptotic construction technique; difference scheme of the solution decomposition method; uniform grids; $\varepsilon$-uniform convergence; maximum norm; Richardson extrapolation technique; difference scheme of highest accuracy order.

UDC: 519.624

Received: 15.12.2014


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2016, 292, suppl. 1, S262–S275

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026