Abstract:
A stationary system of Navier-Stokes equations is considered on a Riemannian manifold diffeomorphic to a two-dimensional sphere. This problem can be used as a model for meteorological processes in planetary atmospheres. An asymptotic series in the viscosity parameter is constructed for a generalized solution under a constraint on the Reynolds number that guarantees the existence and uniqueness of the solution. We prove that partial sums of the series approximate the exact solution in a norm equivalent to the norm of the Sobolev space.