RUS  ENG
Full version
JOURNALS // Proceedings of the Institute of Mathematics of the NAS of Belarus // Archive

Tr. Inst. Mat., 2008 Volume 16, Number 1, Pages 67–72 (Mi timb57)

This article is cited in 2 papers

On the existence of minimal $\tau$-closed totally saturated non-$\mathfrak H$-formations

V. G. Safonov

Francisk Skorina Gomel State University

Abstract: The article deals with finite groups. A $\tau$-closed totally saturated formation $\mathfrak F$ is called a minimal $\tau$-closed totally saturated non-$\mathfrak H$-formation (or an $\mathfrak H_\infty^\tau$-critical formation) if $\mathfrak F\not\subseteq\mathfrak H$, but all proper $\tau$-closed totally saturated subformations of $\mathfrak F$ are contained in $\mathfrak H$. Theorem. Let $\mathfrak F$ and $\mathfrak H$ be $\tau$-closed totally saturated formations, $\mathfrak F\not\subseteq\mathfrak H.$ Then $\mathfrak F$ has at least one minimal $\tau$-closed totally saturated non-$\mathfrak H$-formation.

UDC: 512.542

Received: 03.01.2008



© Steklov Math. Inst. of RAS, 2026