RUS  ENG
Full version
JOURNALS // Proceedings of the Institute of Mathematics of the NAS of Belarus // Archive

Tr. Inst. Mat., 2018 Volume 26, Number 1, Pages 106–112 (Mi timb295)

Finite groups with a distributive lattice of $\sigma$-permutable subgroups

A. N. Skiba

Francisk Skorina Gomel State University

Abstract: Let $\sigma =\{\sigma_{i} | i\in I\}$ be a partition of the set of all primes $\Bbb{P}$, $G$ be a finite group and $\sigma (G) =\{\sigma_{i} |\sigma_{i}\cap \pi (G)\ne \emptyset \}$.
A set $\mathcal{H}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every member $\ne 1$ of $\mathcal{H}$ is a Hall $\sigma _{i}$-subgroup of $G$ for some $\sigma _{i}\in \sigma $ and $\mathcal{H}$ contains exactly one Hall $\sigma _{i}$-subgroup of $G$ for every $\sigma _{i}\in \sigma (G)$. A subgroup $A$ of $G$ is said to be ${\sigma}$-permutable in $G$ if $G$ possesses a complete Hall $\sigma $-set and $A$ permutes with each Hall $\sigma _{i}$-subgroup $H$ of $G$, that is, $AH=HA$ for all $i \in I$.
We characterize finite groups with a distributive lattice of ${\sigma}$-permutable subgroups.

UDC: 512.542

Received: 07.06.2018

Language: English



© Steklov Math. Inst. of RAS, 2026