Abstract:
A $p$-group $G$ is called extraspecial if its derived subgroup, center and Frattini subgroup are groups of order $p.$ We consider the solvable groups whose Sylow subgroups are either abelian or extraspecial. It is proved that derived length is at most $2\cdot|\pi(G)|$ and nilpotent length is at most $2+|\pi(G)|$.