RUS  ENG
Full version
JOURNALS // Proceedings of the Institute of Mathematics of the NAS of Belarus // Archive

Tr. Inst. Mat., 2011 Volume 19, Number 2, Pages 37–46 (Mi timb149)

Matrix exponents and nilpotent algebras

P. P. Zabreiko, A. N. Tanyhina

Belarusian State University

Abstract: The differentiable at zero function $f$ acting in the matrix algebra $\mathrm M_n(\mathbb C)$ ($n\in\mathbb N$, $n>1$) with the properties $f(X+Y)=f(X)f(Y)$ and $f(0)=I$ is studied. The theorems about the general form of such functions are proved.

UDC: 517.965+512.71

Received: 14.09.2011



© Steklov Math. Inst. of RAS, 2026