RUS  ENG
Full version
JOURNALS // Theory of Stochastic Processes // Archive

Theory Stoch. Process., 2010 Volume 16(32), Issue 1, Pages 67–72 (Mi thsp62)

Deviation inequallities for exponential jump-diffusion processes

B. Laquerrièrea, N. Privaultb

a Laboratoire de Mathématiques, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex, France
b Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong

Abstract: We clarify the connection between diffusion processes and partial differential equations of the parabolic type. The emphasis is on degenerate parabolic equations. These equations are a generalization of the classical Kolmogorov equation of diffusion with inertia which may be treated as the Fokker-Planck-Kolmogorov equations for the respectively degenerate diffusion processes. The basic results relating to the fundamental solution and the correct solvability of the Cauchy problem are presented.

Keywords: Deviation inequalities, exponential jump-diffusion processes, concentration inequalities, forward/backward stochastic calculus.

MSC: Primary 60F99; Secondary 39B62, 60H05, 60H10

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026