RUS  ENG
Full version
JOURNALS // Theory of Stochastic Processes // Archive

Theory Stoch. Process., 2011 Volume 17(33), Issue 1, Pages 109–118 (Mi thsp46)

Zeta function regularized Laplacian on the smooth Wasserstein space above the unit circle

Christian Selinger

Université du Luxembourg, Unité de Recherche en Mathématiques, 6, rue Coudenhove-Kalergi, L-1359 Luxembourg, Grand-Duchy of Luxembourg

Abstract: Via elements of second order differential geometry on smooth Wasserstein spaces of probability measures we give an explicit formula for a Laplacian in the case that the Wasserstein space is based on the unit circle. The Laplacian on this infinite dimensional manifold is calculated as trace of the Hessian in the sense of Zeta function regularization. Its square field operator is the square norm of the Wasserstein gradient.

Keywords: Wasserstein distance, smooth Wasserstein space, smooth Lie bracket, optimal transport, entropy, Riemann zeta-function.

MSC: Primary 46E27, 46G05; Secondary 58E10, 28A33

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026