RUS  ENG
Full version
JOURNALS // Theory of Stochastic Processes // Archive

Theory Stoch. Process., 2019 Volume 24(40), Issue 2, Pages 32–60 (Mi thsp305)

First order convergence of weak Wong–Zakai approximations of Lévy-driven Marcus SDEs

Tetyana Kosenkovaa, Alexei Kulikb, Ilya Pavlyukevichc

a Institute of Mathematics, University of Potsdam, Campus Golm, Karl--Liebknecht--Strasse 24--25, 14476 Potsdam, Germany
b Wroclaw University of Science and Technology Faculty of Pure and Applied Mathematics, Wybrzeże Wyspiańskiego Str. 27, 50-370 Wroclaw, Poland
c Institute of Mathematics, Friedrich Schiller University Jena, Ernst–Abbe–Platz 2, 07743 Jena, Germany

Abstract: For solutions $X=(X_t)_{t\in[0,T]}$ of a Lévy-driven Marcus (canonical) stochastic differential equation we study the Wong–Zakai type time discrete approximations $\bar X=(\bar X_{kh})_{0\leq k\leq T/h}$, $h>0$, and establish the first order convergence $|\mathbf{E}_x f(X_T)-\mathbf{E}_x f(X^h_T)|\leq C h$ for $f\in C_b^4$.

Keywords: Lévy process, Marcus (canonical) stochastic differential equation, Wong–Zakai approximation, first order convergence, Euler scheme.

MSC: 65C30, 60H10, 60G51 , 60H35

Language: English



© Steklov Math. Inst. of RAS, 2026