RUS  ENG
Full version
JOURNALS // Theory of Stochastic Processes // Archive

Theory Stoch. Process., 2005, Volume 11(27), Issue 3, Pages 82–91 (Mi thsp287)

Parameter estimators of nonlinear quantile regression

A. V. Ivanov, I. V. Orlovsky

National Technical of University of Ukraine ``KPI'', Peremogy Ave., Kyiv, Ukraine

Abstract: We have obtained the asymptotic normality of parameter estimators of a nonlinear quantile regression with nonsymmetric random noise. Introduction Here, we examine the asymptotic normality of Koenker and Basset estimators [1] or the generalized least moduli estimators (GLME) of nonlinear regression model parameters that generalize least moduli estimators for non-symmetric observation errors. The consistency property of GLME has been considered in [2].

Keywords: Nonlinear quantile regression, parameter estimator.

MSC: Primary 62J02; Secondary 62J99

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026