Abstract:
We consider the class $G$ of diffeomorphisms satisfying Smale's Axiom $A$ on 3-manifolds, such that the nonwandering set of any diffeomorphism from $G$ belongs to the finite union of surfaces. Every surface is an embedding of torus and contains a one-dimensional spaciously situated basic set. Under certain restrictions on the structure of intersection of two-dimensional invariant manifolds of points from this basic sets, it is established the semiconjugacy of any diffeomorphism from $ G $ to a model diffeomorphism.