RUS  ENG
Full version
JOURNALS // Mathematical notes of NEFU // Archive

Mathematical notes of NEFU, 2019 Volume 26, Issue 2, Pages 109–115 (Mi svfu256)

Mathematical modeling

Properties of $(0,1)$-matrices of order $n$ having maximal determinant

M. Nevskii, A. Ukhalov

Department of Mathematics, P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150003, Russia

Abstract: We give some necessary conditions for the maximality of $(0, 1)$-determinant. Let $\mathbf{M}$ be a nondegenerate $(0,1)$-matrix of order $n$. Denote by $\mathbf{A}$ the matrix of order $n+1$ which is obtained from $\mathbf{M}$ by adding the $(n+1)$th row $(0,0,\dots,0,1)$ and the $(n+1)$th column consisting of 1's. We prove that if $\mathbf{A}^{-1}=(l_{i,j})$ then for all $i=1,\dots,n$ we have $\sum\limits^{n+1}_{j=1}|l_{I,j}|\ge2$. Moreover, if $|\det(\mathbf{M})|$ is equal to the maximal value of a $(0,1)$-determinant of order $n$, then $\sum\limits^{n+1}_{j=1}|l_{I,j}|=2$ for all $i=1,\dots,n$.

Keywords: $(0,1)$-matrix with the maximal determinant, simplex, cube, axial diameter.

UDC: 519.61+514.17

Received: 28.02.2019
Revised: 29.05.2019
Accepted: 03.06.2019

Language: English

DOI: 10.25587/SVFU.2019.102.31516



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026