RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2005 Volume 46, Number 3, Pages 553–566 (Mi smj987)

This article is cited in 17 papers

On some applications of the ordinary and extended Duhamel products

M. T. Karaev

Suleyman Demirel University

Abstract: Let $C_A^{(n)}(D)$ denote the algebra of all $n$-times continuously differentiable functions on $\widebar{D}$ holomorphic on the unit disk $D=\{z\in\mathbf{C}:|z|<1\}$. We prove that $C_A^{(n)}(D)$ is a Banach algebra with multiplication the Duhamel product $(f\circledast g)(z)=\frac{d}{dz}\int_0^zf(z-t)g(t)\,dt$ and describe its maximal ideal space. Using the Duhamel product we prove that the extended spectrum of the integration operator $\mathscr{J}$, $(\mathscr{J}f)(z)=\int_0^zf(t)\,dt$, on $C_A^{(n)}(D)$ is $\mathbf{C}\setminus\{0\}$. We also use the Duhamel product in calculating the spectral multiplicity of a direct sum of the form $\mathscr{J}\oplus A$. We also consider the extension of the Duhamel product and describe all invariant subspaces of some weighted shift operators.

Keywords: Duhamel product, Banach algebra, maximal ideal, commutant, extended eigenvalue, extended eigenvector.

UDC: 517.54

Received: 19.07.2004
Revised: 15.11.2004


 English version:
Siberian Mathematical Journal, 2005, 46:3, 431–442

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026