RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 1993 Volume 34, Number 6, Pages 158–164 (Mi smj819)

Haar system rearrangements in Lorentz spaces

E. M. Semenov


Abstract: Let $\chi_n(t)$ $(n\ge 1)$ be Haar functions and let $\pi$ be a permutation of the set of natural numbers such that $\chi_{\pi(n)}(t)$ and $\chi_n(t)$ have supports of the same measure. We study the operators $T_\pi$ that are defined by the equalities $T_\pi\chi_n=\chi_{\pi(n)}$ $(n\ge 1)$. A criterion is found for boundedness of $T_\pi$ in the Lorentz spaces $L_{2,q}$. In particular, boundedness of $T_\pi$ in $L_{2,q}$ $(q\neq 2)$ implies that $T_\pi$ is an isomorphism of $L_p$ onto itself for all $p\in(1,\infty)$.

UDC: 517.512

Received: 19.11.1992


 English version:
Siberian Mathematical Journal, 1993, 34:6, 1142–1148

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026