RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2025 Volume 66, Number 5, Pages 924–928 (Mi smj7988)

On periodic groups with a narrow conjugacy class of involutions

Yu. Maoa, X. Maa, D. V. Lytkinab, V. D. Mazurovc

a School of Mathematics and Statistics, ShanXi DaTong University, Datong, Shanxi, 037009, P.R. China
b Novosibirsk State University, Novosibirsk, Russia
c Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: In a 2000 paper, Mazurov studied periodic groups containing involutions (elements of order $2$) whose centralizers are abelian $2$-groups. That work provided a description of such groups under the assumption that they include a noncyclic subgroup of order $4$. In the present paper, we consider the case where the centralizers of involutions of the group are locally cyclic $2$-groups.

Keywords: periodic group, involution, centralizer, locally finite group.

UDC: 512.542

MSC: 35R30

Received: 09.06.2025
Revised: 09.06.2025
Accepted: 12.06.2025

DOI: 10.33048/smzh.2025.66.512


 English version:
Siberian Mathematical Journal, 2025, 66:5, 1231–1234


© Steklov Math. Inst. of RAS, 2026