RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2025 Volume 66, Number 4, Pages 755–771 (Mi smj7976)

The strong $\pi$-Sylow theorem for finite simple groups of Lie type of rank $1$

V. D. Shepelevab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: Let $\pi$ be a set of primes. A finite group is said to be a $\pi$-group if all prime divisors of its order belong to $\pi$. Following Wielandt, we say that for a finite group $G$ the $\pi$-Sylow theorem holds if all maximal $\pi$-subgroups of $G$ are conjugate; if the $\pi$-Sylow theorem holds for every subgroup of $G$, then $G$ is said to satisfy the strong $\pi$-Sylow theorem. The question of which finite nonabelian simple groups satisfy the strong $\pi$-Sylow theorem was posed by Wielandt in 1979. This paper completes an arithmetic description of the groups of Lie type of rank $1$ that satisfy the strong $\pi$-Sylow theorem.

Keywords: $\pi$-Sylow theorem, strong $\pi$-Sylow theorem, groups of Lie type.

UDC: 512.542

MSC: 35R30

Received: 20.02.2025
Revised: 24.05.2025
Accepted: 26.05.2025

DOI: 10.33048/smzh.2025.66.415


 English version:
Siberian Mathematical Journal, 2025, 66:4, 1049–1062


© Steklov Math. Inst. of RAS, 2026