RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2025 Volume 66, Number 4, Pages 747–754 (Mi smj7975)

Finite minimal non-$\sigma$-supersolvable groups

O. L. Shemetkova

Plekhanov Russian University of Economics, Moscow, Russia

Abstract: Let $\sigma$ be a partition of the set of all primes. A finite group $G$ is said to be $\sigma$-supersolvable if every $G$-chief factor of its $\sigma$-nilpotent residual is cyclic. This paper studies the structure of minimal non-$\sigma$-supersolvable groups that are not $\sigma$-solvable.

Keywords: finite group, $\sigma$-supersolvable group, minimal non-$\sigma$-supersolvable group, partition of the set of all primes.

UDC: 512.542

MSC: 35R30

Received: 04.03.2025
Revised: 04.03.2025
Accepted: 25.04.2025

DOI: 10.33048/smzh.2025.66.414


 English version:
Siberian Mathematical Journal, 2025, 66:4, 1043–1048


© Steklov Math. Inst. of RAS, 2026