RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2025 Volume 66, Number 4, Pages 733–746 (Mi smj7974)

On mixed identities of endomorphs, bimodules, and $\omega$-algebras

A. P. Pozhidaev

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We describe mixed multilinear identities of degree $3$ on right endomorphs of arbitrary algebras over a field $F$ of characteristic not equal to $2$. As a consequence, we obtain irreducible bimodules over $M_n(F)$ in the variety defined by the monoassociativity identity and in the variety of $(1,1)$ālgebras. We construct a broad class of right-symmetric bimodules, including irreducible right-symmetric $M_n(F)$b̄imodules. We introduce a class of $\omega$-right-symmetric algebras ${\mathcal A}_\omega$ with an $\omega$īdentity, which generalizes the class of right-symmetric algebras, where $\omega:{\mathcal A}\times {\mathcal A} \to F$ is a bilinear skew-symmetric form on ${\mathcal A}$. We also describe the structure of finite-dimensional algebras ${\mathcal A}_\omega$, in particular, simple algebras of this kind. We prove that the commutator algebra ${\mathcal A}^{(-)}$ of an arbitrary $\omega$-right-symmetric algebra ${\mathcal A}$ is an $\omega$-Lie algebra and that ${\mathcal A}^{(-)}$ is solvable of degree $\leq 3$ in the finite-dimensional case.

Keywords: endomorph, right-symmetric algebra, simple algebra, pre-Lie algebra, mixed identity, bimodule, irreducible bimodule, right-symmetric bimodule, $\omega$-Lie algebra.

UDC: 512.554

MSC: 35R30

Received: 25.02.2025
Revised: 24.03.2025
Accepted: 25.04.2025

DOI: 10.33048/smzh.2025.66.413


 English version:
Siberian Mathematical Journal, 2025, 66:4, 1031–1042


© Steklov Math. Inst. of RAS, 2026