RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2023 Volume 64, Number 6, Pages 1304–1326 (Mi smj7831)

This article is cited in 1 paper

$BV$-spaces and the bounded composition operators of $BV$-functions on Carnot groups

D. A. Sboev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: Under study are the homeomorphisms that induce the bounded composition operators of $BV$-functions on Carnot groups. We characterize continuous $BV_{\operatorname{loc}}$-mappings on Carnot groups in terms of the variation on integral lines and estimate the variation of the $BV$-derivative of the composition of a $C^1$-function and a continuous $BV_{\operatorname{loc}}$-mapping.

Keywords: Carnot group, composition operator, function of bounded variation, mapping of bounded variation.

UDC: 517.518

MSC: 35R30

Received: 30.06.2023
Revised: 18.07.2023
Accepted: 02.08.2024

DOI: 10.33048/smzh.2023.64.614


 English version:
Siberian Mathematical Journal, 2023, 64:6, 1420–1438


© Steklov Math. Inst. of RAS, 2026