RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2023 Volume 64, Number 6, Pages 1160–1171 (Mi smj7822)

This article is cited in 1 paper

The minimal number of generating involutions whose product is $1$ for the groups $PSL_3(2^m)$ and $PSU_3(q^2)$

R. I. Gvozdev, Ya. N. Nuzhin

Siberian Federal University, Krasnoyarsk

Abstract: Considering the groups $PSL_3(2^m)$ and $PSU_3(q^2)$, we find the minimal number of generating involutions whose product is $1$. This number is $7$ for $PSU_3(3^2)$ and $5$ or $6$ in the remaining cases.

Keywords: finite simple group, generating set of involutions, character of a group representation, special linear and unitary groups.

UDC: 512.542+512.547

MSC: 35R30

Received: 12.03.2023
Revised: 12.03.2023
Accepted: 25.09.2023

DOI: 10.33048/smzh.2023.64.605


 English version:
Siberian Mathematical Journal, 2023, 64:6, 1297–1306


© Steklov Math. Inst. of RAS, 2026