RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2023 Volume 64, Number 6, Pages 1138–1150 (Mi smj7820)

This article is cited in 1 paper

Graphical limits of quasimeromorphic mappings and distortion of the characteristic of tetrads

V. V. Aseev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We fully describe the form of the graphical limit of a sequence of $K$-quasimeromorphic mappings of a domain $D$ in $\overline{R^n}$ which take each of its values at $N$ distinct points at most. For the family of all $K$-quasimeromorphic mappings of $\overline{R^n}$ onto itself taking each value at $N$ points at most we establish the presence of a common estimate for the distortion of the Ptolemaic characteristic of generalized tetrads (quadruples of disjoint compact sets).

Keywords: mapping with bounded distortion, quasiregular mapping, quasimeromorphic mapping, graphical convergence, graphical limit, Ptolemaic characteristic of a tetrad, quasimöbius property.

UDC: 517.54

MSC: 35R30

Received: 04.04.2023
Revised: 04.04.2023
Accepted: 25.09.2023

DOI: 10.33048/smzh.2023.64.603


 English version:
Siberian Mathematical Journal, 2023, 64:6, 1279–1288


© Steklov Math. Inst. of RAS, 2026