RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2023 Volume 64, Number 2, Pages 339–349 (Mi smj7765)

This article is cited in 2 papers

The uniform convergence of Fourier series in a system of polynomials orthogonal in the sense of Sobolev and associated to Jacobi polynomials

M. G. Magomed-Kasumovab

a Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences

Abstract: We establish that the Fourier series in the Sobolev system of polynomials ${\mathcal P}_r^{\alpha,\beta}$, with $-1 < \alpha,\beta \le 0$, associated to the Jacobi polynomials converge uniformly on $[-1,1]$ to functions in the Sobolev space $W^r_{L^1_{\rho(\alpha,\beta)}}$, where $\rho(\alpha,\beta)$ is the Jacobi weight. We show also that the Fourier series converges in the norm of the Sobolev space $W^r_{L^p_{\rho(A,B)}}$ with $p>1$ under the Muckenhoupt conditions.

Keywords: Sobolev inner product, Jacobi polynomials, Fourier series, uniform convergence, Sobolev space, Muckenhoupt conditions.

UDC: 517

MSC: 35R30

Received: 15.07.2022
Revised: 08.10.2022
Accepted: 07.11.2022

DOI: 10.33048/smzh.2023.64.208


 English version:
Siberian Mathematical Journal, 2023, 64:2, 338–346

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026