RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2022 Volume 63, Number 5, Pages 1119–1136 (Mi smj7718)

This article is cited in 1 paper

The solvability of the Cauchy problem for a class of Sobolev-type equations in tempered distributions

A. L. Pavlovab

a Donetsk National University
b Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine

Abstract: We give sufficient conditions for the existence of a solution to the Cauchy problem for the equation $P_2(D_x)\partial_t^2{u} + P_0(D_x) u = 0$ in the space of tempered distributions.

Keywords: Cauchy problem, Sobolev-type equation, tempered distribution, multiplier.

UDC: 517.955

MSC: 35R30

Received: 18.08.2021
Revised: 18.08.2021
Accepted: 15.06.2022

DOI: 10.33048/smzh.2022.63.513


 English version:
Siberian Mathematical Journal, 2022, 63:5, 940–955


© Steklov Math. Inst. of RAS, 2026