RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2022 Volume 63, Number 4, Pages 866–869 (Mi smj7699)

This article is cited in 1 paper

On intersections of $\pi$-Hall subgroups in finite $D_\pi$-groups

V. I. Zenkov

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: We give an example of a series of finite $D_\pi$-groups where for each group $G$ in the series and its $\pi$-Hall subgroup $H$, the inequality $H\cap H^x\cap H^y \neq1$ holds for all $x, y \in G$. Thus a negative answer is obtained both to Problem 7.3 by Vdovin and Revin and its analog—Question 18.31 in The Kourovka Notebook. We also describe the subgroups $\operatorname{Min}_G(H,H,H)$ and $\min_G(H,H,H)$.

Keywords: finite group, $D_\pi$-subgroup, intersection of subgroups.

UDC: 512.542

Received: 20.10.2021
Revised: 20.10.2021
Accepted: 10.12.2021

DOI: 10.33048/smzh.2022.63.412


 English version:
Siberian Mathematical Journal, 2022, 63:4, 720–722


© Steklov Math. Inst. of RAS, 2026