RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2022 Volume 63, Number 4, Pages 831–841 (Mi smj7696)

This article is cited in 8 papers

On the existence of $G$-permutable subgroups in simple sporadic groups

A. A. Galta, V. N. Tyutyanovb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Gomel Branch of International University "MITSO"

Abstract: A subgroup $A$ of a group $G$ is $G$-permutable in $G$ if for every subgroup $B\leq G$ there is $x\in G$ satisfying $AB^x=B^xA$. A subgroup $A$ is hereditarily $G$-permutable in $G$ if $A$ is $E$-permutable in every subgroup $E$ of $G$ which includes $A$. The Kourovka Notebook contains Problem 17.112: Which finite nonabelian simple groups $G$ possess a proper (hereditarily) $G$-permutable subgroup? We answer the question for simple sporadic groups.

Keywords: simple sporadic group, $G$-permutable subgroup, hereditarily $G$-permutable subgroup.

UDC: 512.542

MSC: 35R30

Received: 11.11.2021
Revised: 18.03.2022
Accepted: 15.04.2022

DOI: 10.33048/smzh.2022.63.409


 English version:
Siberian Mathematical Journal, 2022, 63:4, 691–698


© Steklov Math. Inst. of RAS, 2026