RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2022 Volume 63, Number 3, Pages 613–625 (Mi smj7680)

A new nonreduced moduli component of rank-$2$ semistable sheaves on ${\Bbb P}^{3}$

A. N. Lavrov

Department of Mathematics, National Research University "Higher School of Economics", Moscow

Abstract: We describe a new irreducible component of the Gieseker–Maruyama moduli scheme $\mathcal{M}(14)$ of coherent rank-$2$ semistable sheaves with Chern classes $c_1=0$, $c_2=14$, and $c_3=0$ on ${\Bbb P}^{3}$ which is nonreduced at a general point. The construction of the component is based on Mumford's famous example of the nonreduced component of the Hilbert scheme of smooth space curves of degree $14$ and genus $24$ in ${\Bbb P}^{3}$.

Keywords: rank-2 semistable sheaves, reflexive sheaves, moduli spaces.

UDC: 512.7

MSC: 35R30

Received: 11.04.2021
Revised: 05.06.2021
Accepted: 11.06.2021

DOI: 10.33048/smzh.2022.63.310


 English version:
Siberian Mathematical Journal, 2022, 63:3, 509–519

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026