RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2020 Volume 61, Number 6, Pages 1247–1256 (Mi smj6050)

This article is cited in 1 paper

The polynomials of prime virtual knots of genus 1 and complexity at most 5

A. Yu. Vesninabc, M. E. Ivanova

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c Tomsk State University

Abstract: Akimova and Matveev classified the prime virtual knots of genus 1 which admit diagrams with at most 5 classical crossings in 2017. In 2018, Kaur, Prabhakar, and Vesnin introduced the families of the $L$- and $F$-polynomials of virtual knots generalizing the Kauffman affine index polynomial. We introduce the notion of a totally flat-trivial virtual knot. We prove that the $L$- and $F$-polynomials for these knots coincide with the affine index polynomial. Also, we establish that all Akimova–Matveev knots are totally flat-trivial and calculate their affine index polynomials.

Keywords: virtual knot, knot in a thickened torus, affine index polynomial.

UDC: 515.162.8

MSC: 35R30

Received: 06.08.2019
Revised: 06.08.2019
Accepted: 18.10.2019

DOI: 10.33048/smzh.2020.61.604


 English version:
Siberian Mathematical Journal, 2020, 61:6, 994–1001

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026