RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2020 Volume 61, Number 6, Pages 1199–1211 (Mi smj6047)

This article is cited in 5 papers

On the weak $\pi$-potency of some groups and free products

D. N. Azarov

Ivanovo State University

Abstract: Let $\pi $ be a set of primes. A group $G$ is weakly $\pi$-potent if $G$ is residually finite and, for each element $x$ of infinite order in $G$, there is a positive integer $m$ such that, for every positive $\pi$-integer $n$, there exists a homomorphism of $G$ onto a finite group which sends $x$ to an element of order $mn$. We obtain a few results about weak $\pi$-potency for some groups and generalized free products.

Keywords: potent group, residually finite group, soluble minimax group, generalized free product.

UDC: 512.543

Received: 28.04.2020
Revised: 17.06.2020
Accepted: 10.08.2020

DOI: 10.33048/smzh.2020.61.601


 English version:
Siberian Mathematical Journal, 2020, 61:6, 953–962

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026