RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2020 Volume 61, Number 2, Pages 314–321 (Mi smj5983)

This article is cited in 10 papers

Inequalities for determinants and characterization of the trace

A. M. Bikchentaev

Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University

Abstract: Let $\operatorname{tr}$ be the canonical trace on the full matrix algebra ${\Cal M}_ n$ with unit $I$. We prove that if some analog of classical inequalities for the determinant and trace (or the permanent and trace) of matrices holds for a positive functional $\varphi $ on ${\Cal M}_n$ with $\varphi (I) = n$, then $\varphi = \operatorname{tr}$. Also, we generalize Fischer's inequality for determinants and establish a new inequality for the trace of the matrix exponential.

Keywords: linear functional, matrix, trace, determinant, permanent, matrix exponential, Fischer inequality.

UDC: 512.643:517.982

Received: 25.09.2019
Revised: 30.09.2019
Accepted: 18.10.2019

DOI: 10.33048/smzh.2020.61.206


 English version:
Siberian Mathematical Journal, 2020, 61:2, 248–254

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026