RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2020 Volume 61, Number 1, Pages 78–95 (Mi smj5965)

This article is cited in 1 paper

Embedding of jordan superalgebras into the superalgebras of jordan brackets

V. N. Zhelyabin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We show that the Jordan bracket on an associative commutative superalgebra is extendable to the superalgebra of fractions. In particular, we prove that a unital simple abelian Jordan superalgebra is embedded into a simple superalgebra of a Jordan bracket. We also study the unital simple Jordan superalgebras whose even part is a field. We demonstrate that each of these superalgebras is either a superalgebra of a nondegenerate bilinear form, or a four-dimensional simple Jordan superalgebra, or a superalgebra of a Jordan bracket, or a superalgebra whose odd part is an irreducible module over a field.

Keywords: associative commutative superalgebra, Jordan superalgebra, differential algebra, Grassmann algebra, superalgebra of a bilinear form, derivation, composition algebra, superalgebra of a Jordan bracket, bracket of vector type, Poisson bracket, Kantor double.

UDC: 512.554

Received: 01.05.2019
Revised: 01.05.2019
Accepted: 24.07.2019

DOI: 10.33048/smzh.2020.61.105


 English version:
Siberian Mathematical Journal, 2020, 61:1, 62–75

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026