Abstract:
We prove that the group of tame automorphisms of a free Lie algebra of rank 3 (as well as of a free anticommutative algebra) over an arbitrary integral domain has the structure of an amalgamated free product. We construct an example of a wild automorphism of a free Lie algebra of rank 3 (as well as of a free anticommutative algebra) over an arbitrary Euclidean ring analogous to the Anick automorphism [1] of free associative algebras.
Keywords:free Lie algebra, automorphism, tame automorphism, free product, Euclidean domain.